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A new approach to quantize the gavitational field is presented. It is based on the
observation that the quantum character of matter becomes more significant as
one gets closer to the big bang. As the metric loses its meaning, it makes
sense to consider SchroÈ dinger ’ s three generic types of manifolds Ð unconnected
differentiable, affinely connected, and metrically connected Ð as a temporal
sequence following the big bang. Hence one should quantize the gravitational
field on general differentiable manifolds or on affinely connected manifolds. The
SL(2,C) gauge theory of gravitation is employed to explore this possibility. Within
this framework, the quantization itself may well be canonical.

1. INTRODUCTION

Why it is impossible to quantize the gravitational field in the same way

that other fields, such as the EM field, are quantized? The answer to this

question is well known: The standard quantization procedure applies to fields

that are defined over a spacetime of a given metric structure. In the case of

the gravitational field, however, there is no metric structure given a priori.
It is, in fact, this very metric structure that functions as the gravitational field.

The response to this difficulty spans a whole spectrum, from a ª minimalº

to a ª maximalº approach. The ª minimalº approach assumes a background

of a flat metric structure,

g m n 5 h m n (flat) 1 h m n (1)

and treats the deviations h m n from flatness as the field to be quantized. In
the ª maximalº approach one tries for quantization in the context of grand

unification.
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2. THE PRESENT PROPOSAL

We take the middle ground Ð it is a way to fully quantize the gravitational

field, in all its nonlinearity, but the suggested quantization procedure applies
to the gravitational field only.

Consider this: The closer we get to the big bang, the more relevant are

the quantum features. On the other hand, as we get down to times of the

order of Planck’ s time, metric time and space lose their meaning.

This last statement is based on the following arguments: In general,

matter as we know it does not exist at the Planck time, so we do not have
an operational definition of metric relationships.

More specifically, Amati et al. (1989) and Konishi et al. (1990) found,

in the context of string theory, that there is a minimal observable length. A

similar result was obtained on more general grounds by N. Itzhaki (private

communication). This leads to the following question: Is there a cosmological

phase which is generically as well as temporally prior to metric spacetime,
and is it possible to quantize gravity at this phase?

Note that if the answer is ª yes,º we will have a way of resolving the

problem that was mentioned at the beginning: The fact that in the case of

the gravitational field, unlike the electromagnetic and other fields, we do not

have a spacetime of a definite structure on which the field is defined.
The thrust of the present approach is to show that the answer is, indeed,

ª yesº : There is a cosmological phase which is generically prior to metric
spacetime, and it should be possible to quantize gravity at this phase.

Mathematically, this possibility is based on the SL(2,C) gauge theory

of gravitation, as we shall see.

3. A CLASSIFICATION OF MANIFOLDS

Consider the following three generic phases leading to metric spacetimes

(SchroÈ dinger, 1954):

1. The general differentiable manifold (unconnected)

2. Affinely connected manifold
3. Metrically connected manifold

There is an intermediate phase between manifolds 2 and 3: spacetime

with a rudimentary metric structure (STRMS): In metrically connected
spacetimes

G a
m a 5 (ln ! 2 g), m [ f , m (2)

Hence it is possible, in nonmetric, affinely connected spacetimes, to define

f as the potential of G m
m a and let e f play the role of ! 2 g. Equation (2)
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determines the volume element up to an overall multiplicative factor. STRMS

is metric only in the sense of having a volume element; ds2 is not defined

in it.
Perhaps surprisingly, a lot can be done on general differentiable mani-

folds. Covariant, contravariant, and mixed tensors, tensor densities, and spin-

ors can be defined. (However, the usual relationship between covariant and

contravariant components does not holdÐ there is no metric tensor to connect

them!); there are invariant integrals which are obtained by integrating over

tensor densities: If £ is a density, then

# £ d4x (3)

is invariant, and hence we can have a Lagrangian formalism, with Euler±
Lagrange equations.

4. THE SL(2,C) GAUGE THEORY OF GRAVITATION

The theory evolved out of the Newman±Penrose null tetrad formalism

(Carmeli, 1982, Chapter 3). The latter involves, at each point of spacetime, a

tetrad of null vectors l m and n m (real), and m m and (m m (complex), which satisfy

l m n m 5 2 m m m m 5 1 (4)

the tetrad components of the Weyl and Ricci tensors, and the spin coefficients.

For example, the complex tetrad components of the Weyl tensor are

c 0 5 2 C m n r s l m m n l r m s

c 1 5 2 C m n r s l m n n l r m s

c 2 5 2
1

2
C m n r s (l m n n l r n s 2 l m n n m r m s ) (5)

c 3 5 2 C m n r s m m n n l r n s

c 4 5 2 C m n r s m m n n m r n s

Carmeli’s SL(2,C) gauge theory of gravitation (Carmeli, 1982, Chapter

8) is a group-theore tic formulation of the Newman±Penrose formalism. Both

formalisms are equivalent to general relativity, but the SL(2,C) gauge theory
of gravitation can be formulated on affinely connected manifolds (Carmeli

and Malin, 1977) and, as we found in the context of the present work, the

SL(2,C) gauge theory of gravitation can be formulated even on general

differentiable manifolds.
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5. THE STRUCTURE OF THE SL(2,C) GAUGE THEORY OF
GRAVITATION

Start out with a spin frame defined at each point of a manifold: two

linearly independent 2-component spinors satisfying

lAn A 5 1 (6)

(Raising and lowering indices are done with the standard antisymmetric
spinor matrix.) The components of lA and nA are expressed as the components

of a 2 3 2 matrix z . It follows from equation (6) that the matrix S relating

any two spin frames,

z 8 5 1 l 8A

n 8A 2 5 S 2 1 1 lA

nA 2 5 S 2 1 z (7)

belongs to the group SL(2,C).

The introduction of local gauge invariance under the transformations S
of the spin frame brings about a (compensating) gauge field as follows: Since,

in general,

¹ m (S 2 1 z ) Þ S 2 1 ¹ m z (8)

we introduce gauge vector field 2 3 2 matrices B m that transform according to

B 8m 5 S 2 1 B m S 2 S 2 1 - m S (9)

and then

( ¹ m 2 B 8m ) (S 2 1 z 8) 5 S 2 1 ( ¹ m 2 B m ) z (10)

In analogy with the Yang±Mills field these are called potentials.

The corresponding fields are defined, also in analogy with Yang±Mills

theory, as

F m n 5 - n B m 2 - m B n 1 [B m , B n ] (11)

where

[B m , B n ] 5 B m B n 2 B n B m (12)

The fields transform as follows:

F 8m n 5 S 2 1 F m n S (13)

6. THE LAGRANGIAN

There are a number of equivalent ways to write down the Lagrangian

density in the context of metric spacetimes. One of these ways can be used

in general differentiable manifolds:
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£ 5 2
1

2
Tr H e a b g d F a b 1 2 1

2
F g d 1 B g , d 2 B d , g 1 [B g , B d ] 2 J (14)

The potentials and fields are considered independent for the purpose of the

variational procedure. The Euler±Lagrange equations are

F m n 5 B m , n 2 B n , m 1 [B m , B n ] (15)

e a b g d { - d F a b 2 [B d , F a b ]} 5 0 (16)

In equations (14)±(16) only covariant components of the fields and potentials

appear. Hence the absence of correspondence between covariant and contra-

variant components in nonmetric manifolds is not a problem.

7. QUANTIZATION

The straightforward approach is to quantize equation (16) by taking the

usual commutation relations between the matrix elements of the B m and their

canonical conjugates. It is not clear, however, how to resolve the problem
of redundant components, i.e., the existance of more functions than the

number of degrees of freedom. There is, however, a different approach, one

that worked very well for the linearized equations of general relativity in the

Newman±Penrose formalism (Malin, 1974):

The sets of variables of Newman and Penrose are equivalent to the B m and

the F m n . In the case of the linearized approximation to the Newman±Penrose
formalism, it turns out that all the functions can be expressed in terms of

one complex function, c 2. The problem of quantization reduces, then, to

quantizing one complex function. This is done as follows.

Expand in the Wigner matrix elements D
j
sm of the irreducible representa-

tions of the group SU(2):

c 2 (t, r, u , f ) 5 o
`

j 5 0
o
j

m 5 2 j
a j

2m(t, r) D
j
0m( u , f ) (17)

Using the Newman±Penrose equations, one (eventually) gets a separate partial

differential equation for each of the a j
2m:

F 3
- 2

- t 2 1 2
- 2

- t - r
2

- 2

- r 2 1
j ( j 1 1)

r 2 G (r 2 a j
2m) 5 0 (18)

so that the a j
2m can be taken as annihilation operators, and the standard

commutation relations between a j
2m and a j

2m can be postulated. The generaliza-

tion of this approach to the nonlinear case is mathematically challenging;
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there seems to be no reason of principle, however, that prevents it from being

carried out.

8. SUMMARY

The following are the key elements of the present approach:

1. Since the quantum characteristics of matter get more significant as

one gets closer to the big bang, while the metric characteristics lose their

meaning, it makes sense to consider SchroÈ dinger ’ s three generic types of
manifolds (unconnected differentiable, affinely connected, and metrically

connected) as a temporal sequence following the big bang. (The word ª tempo-

ralº is used here in the sense of time sequence, not time measurement.)

2. For the same reason it makes sense to try for quantization of the

gravitational field on general differentiable manifolds (if possible) or on

affinely connected manifolds, with or without rudimentary metric structure.
3. The SL(2,C) gauge theory of gravity seems to be the best existing

theory for the exploration of this possibility.

4. Within this framework, the quantization itself may well be canonical.
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